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lsing Models on the Lattice Sierpinski Gasket 
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Ferromagnetic Ising models on the lattice Sierpinski gasket are considered. We 
prove the Dobrushin-Shlosmann mixing condition and discuss corresponding 
properties of the stochastic Ising models. 
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1. I N T R O D U C T I O N  

This work  originates in an at tempt to unders tand more  about  the enormous  
difference between one-dimensional  and two-dimensional  Ising models. 
Our  interest in the lattice Sierpinski gasket comes from its geometrical 
character as a cross between the one-dimensional  and the two-dimensional  
lattice. The lattice Sierpinski gasket is locally two dimensional,  since each 
point in the lattice has four nearest neighbors. However,  it is in a sense 
closer to the one-dimensional  lattice. For  example, there exists a sequence 
{ W~}i:k I of  finite sets which increases to the whole lattice keeping 
10wA = 8 .  It is therefore reasonable to expect that  a fairly s trong mixing 
property survives for an Ising model  on the lattice Sierpinski gasket even 
at low temperature.  The purpose of  this article is to vindicate this expecta- 
tion from both  the static and dynamical  points of  view. Before we can state 
the results precisely, we have to introduce a long sequence of  definitions 
and notations.  
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The Lattice Sierpinski Gasket. We will denote the usual 
Euclidean distance on R 2 by d(x, y) = Ix -Yl .  We define x* -- ( - x ~ ,  x,,) for 
x=(x . , x , _ )~R  2 and A * = { x * ; x E A }  for A c R  2. Set x t=2 t (1 ,0 )  and 
Y/--- 2/(1/2, v/3/2) (1= 0, 1,...). Starting with Ao = {0, Xo, Yo}, we construct 

. 4  :'= a sequence ( t)~=o of finite subsets in R 2 inductively by 

AI+I = U ALv 
v=O 

where 

t 
A if v = 0  

Ai.v = Al+ xl if v = l  

( A / + y  / if v = 2  

Now, we set W~=A* wA~ and define the lattice Sierpinski gasket G by 

G=t  w, 
/ = 0  

The number of points contained in A ~ G will be denoted by IA[ and we 
write A c o G  when A c G  and 1 ~< IA] < or. A set W c c G  is said to be an 
I-pair with the joint q s G if there exists {x, x'} c G such that 

W = ( A l + x ) w ( A l + x ' )  

{q} = ( A / + x ) n ( A / + x ' )  

For  example, W / is an /-pair with the origin as its joint. 
The set B of bonds in G is a subset of {{x,y} c G ;  I x - y l  = l} defined 

as follows. Let Bo= { b c A o ;  Ibl =2} and 

2 

B/+,= U B/ .... l=0 ,  1 .... 
v = O  

where 

B/ if v=0  
B~,= {b+xl;bEB~} if v : l  

{b+yl ;b~Bi}  if v = 2  
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Finally, define B by 

,zC 

B= U B,*uB,, 
n ~ 0  

where B,* = {b*: b e B,,}. For  a set A = G, we also define 

B~ = {{x,y} eB; (x ,y)eA 2} 
OA = {{x,y} e B ; x e A ,  yCA} 

Oi,uA = {x e A; x e b for some b e OA} 

O,,,tA = {x r A; x e b for some b eOA} 

T h e  C o n f i g u r a t i o n .  The set of all spin configurations of 
S = { - 1 , 1 }  o n A c G i s d e n o t e d b y S  ~', 

S~f={a=(~r,.).,.~,,;cr,.eS}, A c G  

As usual, S A is endowed with the product topology inherited from the 
discrete topology on S. In S A, the following partial order is introduced: 

~<~cr' if ~,.~<a;. forall  x e A  

Clearly, the maximal and the minimum element in this partial order are 
+1 and - 1 ,  which are respectively the configurations with all spins + 1 
and - 1 .  For  f ;  SA-.-*R and x e A ,  we set V , . f ( a ) = f ( w " ) - f ( o ' ) ,  where 
G"=(aI'~),,~A is the confuguration obtained from cr by flipping the spin 
at x, 

{:7,  if ,,--x 
crf = if y 4: x 

For S ~ ~ R, we introduce the notations 

A r = { x e A; V.,.f is not identically zero } 

Ilfl[ = sup [f(a)l  
a e S  .I 

IIIflll = ~ IIV,..fll 
X E  /1 

Function spaces ~ and ~ (A ~ G) are defined respectively by 

~ =  {f: S ~--* R; la.rl < m} 

cg~, = { f :  S ~ __+ R; a f c  A } 
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The Local Specification. For  a measure m on some measurable 
space, we wil use the following abbreviations 

mf  = f  f dm 

117(./'; g) = m( f g ) -- inf. mg 

whenever the integrations make sense. Fix J = ( J b ) b ~ R  B and h =  
(h.,.).,.eR a. We will refer to J, h, and the pair ( J , h )  respectively as the 
coupl&g constants, the magnetic.field, and the &teraction. For  A c c  G and 
co ~ S a, the Hamiltonian HA,c, , E ~'A is defined by 

- H j . o , ( a )  = ~ J{.,...,.la,.ay+ ~ tx, (h,-+ ~ J,.,..,.I co.,.) 
{x,y} EBf  .x-EA v:{.v v} ~&4 

The (J, h)-Ioeal specification is a family {/#L,o; A c c  G, cot S c'} of Borel 
probability measures on Z "G defined by 

,~ . . . . . .  [p~'(f  exp - H..L,~)" ~ 

where p~' is the 1/2-Bernoulli measure on Z "  and g~o is the Dirac delta 
measure concentrated on the configuration (o. 

The Inf inite-Volume Gibbs State.  A Borel probabili ty measure 
tl is called a (J, h)-&finite-vohmm Gibbs stale or simply a (J, h)-Gibbs slate 
if it solves the following Dobrushin-Lanford-Ruel le  equation: 

It(/tA'f) =lt.f, VA ~ c  G, Vf ~ g ( 1.1 ) 

By a slight extension of the arguments in ref. 2, p. 356, we see that if 
supb~B [Jb] < or, then there exists a unique (J, h)-Gibbs state it on S ~. This 
in turn implies that 

lim sup [lt'L"f--lff']=O forall  f ~ , '  (1.2) 
. I ] ' G  os ~ .S~, 

[-see ref. 5, p. 120, (7.10), for example].  

T h e  Stochas t i c  Dynamics.  We introduce now for the above 
Ising model the time evolution called the stochastic Ising model or Glauber  
dynamics. To do this, we now suppose there exist J ~> 0 and h >~ 0 such that 
J e [ - J , J ]  n and h ~ [ - h , h ]  a. We define for each x ~ G  an operator  
A,.: cr ~' by A, . f=c2V, . f ,  where the flip rate c.,.: s a ~ ( o ,  or) is a func- 
tion on which we assume the following: 
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( R - D  
such that 

(R-2) 

(R-3) 
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Boundedness: There exist positive constants c(J, h) and ~(J, h) 

c_(J,h)~c.,.(a)<.E(J,h) for all ( x , a ) e G x S  a 

Finite range: There exists r/> 0 such that VyC,.-= 0 if Ix -Yl  > r. 

Detailed balanced condition: 

V.,.{c.,.(a) exp-H{.,.}.~,(a)} =-0 forall xeC,  (1.3) 

We introduce the stochastic Ising model in a finite set A c c  G with the 
boundary condition co e S a. We define an operator AA"~ ~g ~ ~ by 

A'~"~ ~ A,.f(a[+,.col~,.), f ecg 
A" E A 

where al ~. col +~, denotes the following configuration: 

We then have 

We set 

a,. if x e A  
(crlA �9 col,,,).,. = 

c~,.,, if x ~ A  

_/,. , , ,(f~., . ,og) = ,  y~ A.,, v l~ ( , . , . . , . fV_, .g) ,  
. r e  A 

{ f , g }  c ~ o  (1.4) 

T/"'~ = exp tA A''', t > 0 

A "j''~ and T/"'~ can also be regarded as operators from ~)~ into itself. 

2. R E S U L T S  

We will show the following property for the local specification, which is 
called complete analyticity or the Dobrushin-Shiosmann mixing condition. 

Theorem "2.1. For any J>~ 0, there exists Co e (0, oo) such that the 
following holds for any J e [0, j]B, h e r  a, A c ~ G ,  y(EA, and J ' e  (g+~: 

sup Ip'~'" f -p" l" ' f [  <~ Co lllflll exp d(Af, y) (2.1) 
,o e ~ Co 

Starting from Theorem 2.1, we can derive ergodic properties of the 
stochastic Ising model. 
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T h e o r e m  2.2.  For  any J>~ 0 and h >/0, there exists { C~, C2, C3} 
(0, m)  such that the following hold for any d e [ 0 ,  J ]  B, h e [ - h , h ]  a, 
A c c G ,  and f e  CgA: 

(i) /la'~~ 1 ~ / ,A ' ' ( IV , f l  ~-) (2.2) 
X E , I  

(i i)  /x A . . . .  log ~ C ,  ~ .,I .... .2  _ / ,  ( I V . , . / I )  (2.3) 
A" ~ .4 

t 
(iii) II T["~"f--/tA'r176 <~ C( f )  exp - - -  (2.4) 

C3 

where C ( f ) >  0 is a function o f f e  ~', which does not  depend on the choice 
of A and co. 

Proof. The equivalence of  the condit ions (2.1)-(2.4) is well estab- 
lished in the cubic lattice case (e.g., refs. 13 and 10) and almost the same 
p roof  works in our  setting. So we will just indicate the references. It is well 
known that (ii) implies (i) [ref. 3, p. 224, (6.1.7)]. Using Theorem 2.1, we 
can prove (ii) just in the same way as ref. 10, Theorem 3. With (ii) in 
hand, we can follow the arguments  in ref. 12, Lemma 2.9 to conclude (iii). 

Q E D  

3. PROOF OF T H E O R E M  2.1 

In this section, we will prove Theorem 2.1. We assume that the coup- 
ling constants J satisfy d ~ [0, J ]  B for some J/> 0. For  the moment ,  we will 
consider for each A c c  G a magnetic field h = "J R "1, (h.,.).,.~ ..I ~ which may be 
A-dependent.  We define a probabil i ty measu re / t  A'h on Z "'1 by 

where 

t,,.h,. P:~(f_exp_--H..,.h) 
l J -- p:l exp -H~-~-~, h ' . f~%~ (3.1) 

Y, h:,.'o, 
{x,y} ~B.t xE.,! 

When h A = 0, we will omit the index h: 

/1.4 .,I. h, =Iz Ih; ~-o 

HA = H1.hb,:,'=_o 

(3.2) 



Ising Models on the Lattice Sierpinski Gasket 301 

The measure pA,h defined above will be called the finite-volume Gibbs state 
with respect to the Hamiltonian (3.2), to which we can apply standard 
correlation inequalities such as FKG, GHS, GKS1, and GKS2} 4) Also, the 
following inequality due to E. Lieb is useful for our purpose. 

L e m m a 3 . 1 .  Is~ Suppose that X c c G ,  Y c r  h~'=_O, and h[-=O. 
Then, for any ( x , y ) ~ X \ Y x  Y\X,  

where 

p"'~'+t~"(a.,.ay) <<. Y" px(a.,.a:) pH~+H"(a:ay) (3.3) 
zE.Yn Y 

pH,'+,)f  p.V,~ ) ( fexp(  --H x -  H).)) 
- ~ i = ~ -  Hr~-- H,.----I) 

Proof. This is (20) of ref. 8. QED 

Although G is not a homogeneous object like Z u, the nonhomogeneity 
can be circumvented by the following simple observation. 

k e m m a  3.2. For each x e G  and l e N ,  there exist /-pair U/..,-, 
( /+  1 )-pair II/+ L.,., and a point q,..,, e G such that the following hold: 

(i) x ~  U/,.,.. 

(ii) UL.,. and V~+ L.,- have qL.,. as the common joint. 

Proof. For any l e N ,  there exists X~c G such that G = I,).,-~.v, (x + A~). 
Let us call each x + A i  (xeXi)  an l-cell. For each ( /+l)-cel l  A, there 
exist another three ( /+l)-cel ls  t~A~i~t3~j=~ such that { A w A  ~j~t3Jj=~ are 
( l+  1)-pairs. This implies that for any x EA, there exists a triple 
{ U/..,., V~+ L.,-, q~..~}, with the desired properties. QED 

L e m m a  3.3. For any J~>0, there exists C4e(0, oo) such that the 
following holds for any A ~ c G ,  ( J h ) b E [ O , J ]  a, and (hi~!).,.~[0, oo)'tw 
( - ~ ,  0 ] " :  

0 ~p"~'h(a.,.; a.,.) <~ C4 exp -- - -  [ x - y ]  forall { x , y } c A  (3.4) 
c4 
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Proof. The left-hand-side inequality is nothing but the FKG 
inequality. To prove the right-hand-side inequality, it is sufficient to con- 
sider the following special case: 

Jl,=-J, V b e B  (3.5) 

h~,! - 0, VA c c  G, Vx ~ A (3.6) 

In fact, A,h . p (a.,., a,.) is an even function of ..I �9 ( h  ,. )~.~A E R "~, and is nonincreas- 
ing in [0, ~ ) ~  by the GHS inequality�9 When he  [0, ~)A, pA.h(a,.; a,,) is 
also a nondecreasing function of J by the GKS2 inequality. Therefore, if 
(h~!),.~A ~ [0, o V ) � 9  0] :1, then 

t#'h(a.,.; a,.) -,.< pA'h(a.,.a,.)lh:,' =-O.S,,=--J 

In view of this, we will assume (3.5) and (3.6). We will divide the rest of 
the proof into three steps, in which we will abbreviate pA'b(a�9 by 
ic'~(x,y) and (xl+yl)/2 by z/. 

Step I. We first show that 

09:=ic1~(0, xl) / -~ . ,  0 (3.7) 

To see this, we consider the unique infinite-volume Gibbs state ll for Jb -= J 
and h , . -0 .  Then, (1.2) implies that 

lim It(0, x / ) = 0  
/ ~ : r  

while (1.2), FKG, and GKS2 yield 

sup pA(0, X/) =p(0 ,  X/) 
A c c  G 

Combining these two, we obtain (3.7). 

Step 2. D e f i n e O t e [ 0 , 1 ]  by 

~5/= max{p "'~+ '(z, z' ); z ~ W/, z' e 8i,, W/+ i} (3.8) 

We next prove that 

6/ / - ~  0 (3.9) 
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Set Y/= {x~ Wl+t; ]x] >~2/}. We then have Hw~+,=H...~+Hr. Therefore. 
for ze  Wl\O~.t Wi and z' E0i.t W/+~. we have by Lieb's inequality (3.3) 

IL "" +'(z, z' ) ~ ~ ll W,(z, w)ll "; + '(w, z' ) 
w E Oin I H'/ 

and thus 

6t<~4max{t.lw~+'(w,z');weOi,uWl, z' eO~.,Wt+~} (3.10) 

We now estimate the right-hand side of (3.10). Because of the symmetry 
which comes from the assumptions (3.5) and (3.6), we have only to con- 
sider the following three correlations: 

Itw~+'(x/, x/+l), llw~+'(-x/,y/+l), ll'"~+'(x/, x'f+~) 

For ltw~+'(xl, x~+t), we have by Lieb's inequality that 

It w~+ :(xt, x/+ i) 

/ 
._l_ ] l . ' l l - I  + (Xl + Xl+l  )/2 QX]+ 

I 

Similarly, 

and 

l l  w,+ '(.x/, )'1 + l )  <~llA~'~-( )'1 +l, ) ' / ) l l  w~+ ,( )'1, .x/) 

+/t~'~2(YI+ l ,  z /+  ~) / l  ""~+'(z/+ l ,  -x/) 

ll ,v~+ '(x/, x*+ ~) ~< ll ''r+ '(.x?+ ,, 0) ll '";+'(0, .x~) 

~ 0(,i + I 

Therefore, (3.7)implies (3.9). 

Step 3. We are now in a position to conclude (3.4). The following 
argument will be reminiscent of the proof of ref. 11, Theorem 1.2. Take 
/ t  N satisfying 

46~ < exp - 1 (3.11 ) 
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We may assume that I x - y l  > 2; and hence that  n2 t<  [ x - y l  ~< (n + 1 )2; for 
some n = 1, 2 ..... We may also assume that A ~ { z e G ;  I x - z [  ~<(n+ I )U}.  
For  each z e A ,  take a triple { U/,__, V~+~.:, q;,:} in Lemma 3.2; then we 
obtain by Lieb's inequality and (3.11) that  

I # ( x ,  y )  <~ 

<~ 

y ,  p v ' + " ' ( x ,  v j ) p " ( v . ,  x} 
t 'l ~ t3int | : 1+  I, ~ 

Y. ' Z ;, "+','(.,, v,) 
V I E ,3in t 1:1 + I, v I t'n ~- taint J/I + I. t'n 

x -. p v, +, ..,,_, ( v,, _ 1, v,, ) It "( v,,, y)  

~< (46/)" 

~< exp - ;7 

~<exp (1 [ x ~ y [ )  

which proves (3.4). Q E D  

P r o o f  o f  T h e o r e m  2.  1. 

S t e p  1. We will prove that 

0 <~lt"f'h(a,.; a,.) <~ C4 exp -- I x -  y_____J (3.12) 
- . C 4  

for all A c c  G and h e R s, where 6'4 is the constant  which appears in (3.4}. 
The left-hand-side inequality is nothing but the FKG.  To show the right- 
hand-side inequality, define a bijection 

(a  I, a-') ~ (S'~) 2 

~ l a + ,  o - ) e  ;v:= {l~+, ~ - ) ~  {o, _+ 1 } :,; i~.,.+): + i~,r)-" = 1} 

by a. + = (a~,. + a2,.)/2. We then have that 

-- H ~j,h( a I ) --  H.t .h( a 2) 

= E 
{ x . . , . }  E B . 2  

= y .  
{x..r} e B.~ 

i ~ , , i i h,.a-,.) 
. . . ( h , . a , . +  . _ Jl . , . : . l (a. , -a, .+aT,-a~ ) +  Z . . I , 

A" ~ . |  

"~ + 4-  + -J l . , .vl(~ ~ +or.(- a., 7 ) +  Z 2h," o-.,. 
.V E ,4 

= - g H  L(cr +) - 2 H  i,o(O-) (3.13) . i ,  n 
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and thus, for a function f = . f ( a L  a 2) on (SA) 2, 

(lt".a.h| = Z~''~'-f exp - 2 { H " ' h ( G + ) +  H'"~ (3.14) 
(2-U,h)- ~ 

where /N ' J ' h= / l  A'h and 2 " ' a ' h = ~ s . ,  exp--H,.h(cr).  Also, it easy to see 
that 

cr) ~ ~' J h| ," ~ h(a-O.- lV~'a'h(a , . ;  ,. =~ l  " ' I " " ,. ,. ) (3.15) 

By (3.14) and (3.15), 

2(2~"a'h) 2 It '"J'h(o'.,.; o'.,,) 

= ~ a,.--c;$ exp - 2 { H , . d a + ) + H , . o ( a - ) }  
,9-10"2 

= ~ a,. a,. exp - - 2 { H , . h ( a + ) + H A . o ( a - ) }  
(a+,a- l~T 

Y' a.,. a,. exp - 2 { H A . h ( a + ) + H , : o ( O - ) }  (3.16) 
I ' ~ , !  ( t r + . a - I : a ~ = + + _ l o n l  ", 

~;,+ = + l on ,.J\r 

In the fourth line, we have decomposed the summation over (a +, a - ) e  T 
according to the "support" /" of a - .  The following trivial observation has 
also been used: 

H f . o ( a - ) = H r . o ( a - )  if a - - 0  on A \ F  

By (3.15) and Lemma 3.3, we have that 

a~ o'.,_ exp - 2H r.o( a -  ) = 2 2  r'aJ'~ r'2J'~ a xa y ) 
, ~ - ~ { - I , + l l  r 

Ix -y l  2C42 r''-'L~ exp 
C4 

Plugging this into (3.16), we end up with 

(3.16) <~2C4 ~ 2r '2a '~  "'\r'2a'zh e x p - I x - y l  
F' ~ ,1 C 4  

Now, by repeating similar computations, we have 

(3.17) 

(2"U'h)-'= y' 2r.2a,o2,'\r.2~.2h 
F ~ A 

Putting (3.16)-(3.18) together, we conclude (3.12). 

(3.18) 
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Step 2. We will prove (2.1). We first assume that f(a)=a~ (z~A). 
In this case, we obtain 

~ d  
sup IpA'~176 = ~i~"h'o~(a__) dO 

r E S G 

f l  .,I h(O) = - 2  ~ Jl,..,,ico,,/l �9 (a__; a,,) 

.... ~: I,, ,,,I = t ( 3 . 1 9 )  

where we have defined the mgnetic field h(0) by 

/,,.(0) = h, + Z 
wCA: Iw--xl = 1 

But we have by (3.12) that 

Jr - o )  co,,.} 

it"l'h~m(a:; a,.) <~ Ca exp 

C 4 exp 

I / ) m Z  I 

C4 

l y - z l - 1  
Ca 

Plugging this into (3.19), we obtain (2.1) for the case f ( a ) = a _ .  The 
general case follows from ref. 1, Lemma(2.1). QED 
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